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DISPERSION OF WAVES IN IMMERSED LAMINATED
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A layer element method (LEM) is presented for analyzing frequency and group velocity
dispersive behaviours of waves in a laminated composite cylinder surrounded by a #uid. The
LEM applies "nite elements to model the radial displacement of the cylinder and the radial
pressure of the #uid, and complex exponentials to express the axial and circumferential
displacements of the cylinder as well as the axial and tangential pressures of the #uid.
The dispersive equation for the #uid-loaded cylinder follows from variational techniques.
The frequency and group velocity dispersive relationships of the #uid-coupling cylinder are
obtained by means of the Rayleigh quotient. Numerical results are given for hybrid
laminated composite cylinders and cylindrical shells submerged in water. The addition of the
#uid is proven to have considerable impact on the group velocity spectra of waves in
laminated composite cylinders.

� 2002 Academic Press
1. INTRODUCTION

Wave propagation in anisotropic media has been a subject of intense research interest in the
last few decades. There now exists much work on Rayleigh, Lamb, Love and Stoneley waves
in anisotropic media which were well reviewed [1}6].

As composite cylinders and cylindrical shells have been widely used in industrious "elds
of marine, petrochemical, nuclear and power generation, and so on, great e!ort has been
directed towards study of waves propagating in anisotropic cylinders and cylindrical shells.
Markus and Mead [7, 8], and Yuan and Hsieh [9] studied analytically free waves in
composite cylindrical shells. Xi et al. [10}13] treated semi-analytically free waves of
laminated composite shells of revolution either in vacuum or partially "lled with a #uid.
In their analyses, the e!ects of transverse shear deformation, material non-linearity,
the coupling between symmetric and antisymmetric modes, and the coupling between the
#uid and shell were taken into account. Han et al. [14] dealt with transient waves
of cylindrical shells composed of functionally gradient materials. Rattanwangcharoen
et al. [15] studied the re#ection problem of waves at the free edge of composite cylinders.
Rattanwangcharoen et al. [16] and Zhuang et al. [17] investigated axisymmetric guided
waves scattered by cracks in welded steel pipes. Xi et al. [18}20] examined waves
scattered by cracks in laminated composite cylinders either in vacuum or loaded by a
#uid. Nelson et al. [21], and Huang andDong [22] analyzed frequency spectra in laminated
composite cylinders using analytical}numerical methods. Berliner and Solecki [23, 24]
discussed analytically the frequency dispersive behaviours of waves in #uid-"lled
transversely isotropic cylinders. Xi et al. [25] investigated frequency spectra, group velocity
spectra and characteristic surfaces of waves in laminated composite cylinders and
2-460X/02/070215#13 $35.00/0 � 2002 Academic Press
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cylindrical shells using a semi-analytical procedure, but leave open the e!ect of #uid
presence.

Laminated composite cylinders and cylindrical shells surrounded by a #uid are
frequently encountered in practical engineering. Therefore, this paper intends to present
a method for analyzing frequency and group velocity dispersive behaviours of waves in this
type of #uid-loaded cylinder and cylindrical shell. In this approach, the radial displacement
of the cylinder and the radial pressure of the #uid are modelled by "nite elements, while the
axial and circumferential displacements of the cylinder as well as the axial and tangential
pressures of the #uid are expanded as the complex exponentials. The dispersive equation for
the #uid-loaded cylinder follows from variational techniques. The frequency and group
velocity dispersive relationships of the #uid-coupling system are established in terms of the
Rayleigh quotient. The e!ects of the #uid addition, wave normal and propagation modes,
ratio of radius to thickness and lay-ups on the frequency and group velocity spectra are
discussed via numerical examples.

2. FORMULATION

Consider a laminated composite hollow cylinder of inner radius R
�
and outer radius R

�
,

surrounded by an ideal #uid of outer radius R
�
, as shown in Figure 1. The hollow cylinder

has circular ends and straight slides. When the thickness of wall is large, we refer to it as
a thick cylinder; when the thickness of wall is small, we refer to it as a cylindrical shell.
Obviously, the wave propagation in the cylinder is of the helical form. Since the wave
Figure 1. Laminated composite cylinder surrounded by #uid.

Figure 2. Annular solid element subdivision and the jth isolated element.
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propagates in the in-surface of the cylinder only, we can handle the radial and in-surface
displacements using the variable separation method. The in-surface helical wave may be
conveniently expressed in the form of complex exponentials. In view of material
heterogeneity associated with di!erent materials and/or di!ering orientations in the various
plies, it is suitable to use "nite elements to model the radial variable of the wave. This
treatment is similar to that by Nelson et al. [21].

In this study, an annular solid element shown in Figure 2 is used in the subdivision
of the cylinder in the wall direction. The solid element has the inner, middle and outer
nodal surfaces i, m, o, that have each three degrees of freedom, u, v, w. Hence, the vector
of the unknown displacement amplitudes of the solid element is expressed as
U�"[u

�
v
�

w
�

u
�

v
�

w
�

u
�

v
�

w
�
]�, where the superscript e denotes the element. Suppose

that the cylinder is subdivided into NI strip elements in the radial direction and the element
numbering goes from the inner to outer surface, and that r

�
and r

�
represent, respectively, the

inner and outer radii of any solid element j. The displacements u"[u v w]� within an
element are thus approximated as

u"N(r)U� exp i(n�#k
�
z!�t), (1)

where n is the wave number in the circumferential direction and k
�
"k cos� is the wave

number in the axial direction. When the wave of wave number k propagates in the cylinder
at an arbitrary � angle with respect to the z-axis, we have

n"R
�
k sin�, k

�
"k cos�. (2)

In equation (1), N (r) is the shape function matrix of the solid element given by

N(r)"�(1!3rL #2rL �)I 4(rL !rL �)I (!rL #2rL �)I� . (3)

Here rL "(r!r
�
)/ (r

�
!r

�
), r

�
)r)r

�
and I is a 3�3 identity matrix. � is the circular

frequency.
With the displacement model, we can readily derive the dispersive equation for the

cylinder by means of the Hamilton principle that takes the form

�
��

��

� (<!¹ ) dt"0, (4)

where t
�
and t

�
are time instants, and < and ¹ are, respectively, the potential energy and

kinetic energy of the solid element.
The kinetic energy of the solid element is expressed as
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where � is the mass density of the material of the solid element.
The potential energy of the solid element in the absence of body forces is given by
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where u
�
, u

�
are, respectively, the vectors of the inner and outer surface displacements of

the solid element, T
�
, T

�
are, respectively, the tractions on the inner and outer surfaces of the

solid element, �"[�
�

�� �
	
�
	� �

	�
�
��]� and �"[	

�
	� 	

	


	� 


	�


��]� are, respectively, the

vectors of strains and stresses.
Under the assumption of small deformations, the strains are related to the displacements,

in the cylindrical co-ordinate system by

�"Lu, (7)

where L is the di!erential operator matrix given by
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Here L
�
, L

�
, L

�
and L

�
can be obtained by inspection from equation (8).

Assume that the cylinder is composed of an arbitrary number of linearly elastic, shell-like,
transversely isotropic plies and that the bonding between plies is perfect. Then, the
o!-principal-axis stress}strain relations for any ply are given by

�"Q� �, (9)

where Q� is the matrix of the o!-principal-axis sti!ness coe$cients of the ply. The sti!ness
coe$cient matrix is symmetric. Their expressions in terms of engineering constants are
given by Vinson and Sierakowski [26].

Invoking equations (7)} (9), equation (6) may be rewritten as
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where D
�

"L�

�
Q� L



( i, j"1, 2, 3, 4).

Substituting equations (5) and (10) into equation (4), and carrying out variation with
respect to U�, we "nd the dispersive equation for the solid element

(K�
�
!��M�

�
)U�!F�"0, (11)
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where the subscript c denotes the cylinder,
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are the sti!ness, mass and load matrices of the solid element respectively. A�
�
( i"1, 2,2, 6)

in equation (12) are de"ned as
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The dispersive equation for the cylinder can be obtained through assembling all of the
elements at the nodal surfaces. The boundary conditions on the cylinder}#uid interface and
the inner surface of the cylinder as well as the interface conditions between the solid
elements are

T �
�
"0, (21)
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��
, U�



"U �


��
for 1(j(NI !1, (22)

T�
�
"[0 0 p]�"n�p, (23)

where p is the hydrodynamic pressure acting on the outer surface of the cylinder that is
expressed as p"N

�
�
	

�

P from below, the subscripts denote the element numbers, and the
superscripts denote the inner and outer nodal surfaces of the solid element.



Figure 3. Annular #uid element subdivision and the jth isolated element.
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Using equations (21)} (23) to assemble elements at the nodal surfaces, we get the
dispersive equation for the cylinder

(K
�
!��M

�
)U!FP"0, (24)

where
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N� �
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n�N

�
�
	

�

(25)

is referred to as the coupling matrix, through which the hydrodynamic pressure of the #uid
a!ects the displacements of the cylinder.

We can analyze the #uid in a similar way. The pressure variation in the radial direction is
modelled by annular #uid elements, while the pressure variations in the axial and
circumferential directions are expanded as complex exponentials. The annular #uid element
used is shown in Figure 3. The #uid element has the inner, middle and outer nodal surfaces,
i, m, o, and each nodal surface has one degree of freedom, p. Hence, the vector of
nodal-surface unknown pressure amplitudes of the #uid element is expressed as
P�(�, z, t)"[p

�
p
�

p
�
]�. Suppose that the #uid is subdivided into NI

�
#uid elements in the

radial direction and element numbering goes from the inner to outer surface, and that r
�
and

r
�
represent, respectively, the inner and outer radii of any #uid element j. Thus, the

hydrodynamic pressure within the #uid element may be expressed in terms of nodal-surface
unknown pressure amplitudes as follows:

p (r, �, z, t)"N
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z!�t), (26)

where

N
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(r)"[(1!3rL #2rL �) 4(rL !rL �) (!rL #2rL �)] (27)

is the shape function matrix of the #uid element.
The dispersive equation for the #uid element can be derived by way of variational

technique. From the #uid dynamic equilibrium and continuity equations, we obtain the
following dynamic equilibrium in terms of the hydrodynamic pressure:
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where c is the speed of sound in the #uid and t is the time. To use variational technique, we
need to construct a functional for the #uid element that is equivalent to equation (28). By
means of variational method, we can readily develop the functional
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(29)

where the volume integration represents the energy due to the hydrodynamic pressure;
the area integration represents the potential energy due to the pressures on the nodal
surfaces of the #uid element. Substituting equation (26) into equation (29) and performing
variational manipulation of � with respect to P� leads to the dispersive equation for the
#uid element
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are the sti!ness, mass and load matrices of the #uid element respectively. A�
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(i"1, 2, 3) in

equation (31) are de"ned as
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The dispersive equation for the #uid can be obtained by assembling all of the #uid
elements at the nodal surfaces. Since the #uid}cylinder coupling e!ect occurs only in the
vicinity of the interface between the #uid and cylinder, for R

�
PR, the hydrodynamic

pressure along the outer surface of the #uid vanishes. The boundary conditions on the
interface between the #uid and cylinder, and the interface conditions between the #uid
elements are
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where the subscripts denote the element numbers, the superscripts denote the inner and
outer surfaces of the #uid element, and �

�
is the density of the #uid. The quantity wN is the

radial displacement on the outer surface of the cylinder that is written as wN "nNU from the
above.

Using equations (37) and (38) to assemble all of the elements at the nodal surfaces, we get
the dispersive equation for the #uid

(K
�
!��M
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��F�U"0, (39)

where the coupling matrix F is the same as that given in equation (25).
Finally, the results of equations (24) and (39) can be combined as follows:
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or in compact form

(K!��M)�"0. (41)

This equation is referred to as the dispersive equation for the #uid-loaded cylinder. When
the wave number k is speci"ed, we can solve equation (41) for the circular frequency of the
cylinder submerged in a #uid, and accordingly obtain the relationship between the wave
number k and circular frequency �; this relationship is called the dispersive relationship for
the #uid-loaded cylinder.

With the aid of Rayleigh's quotient, we can conveniently express the circular frequency
for the mth mode as
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where ��
�
and �


�
are the mth transposed left and right eigenvectors of equation (41).

The group velocity, at which energy is transported, is de"ned as

cg"d�/dk. (43)

Di!erentiation of equation (42) with respect to k provides the group velocity for the mth
mode

cg�
"

��
�
K

��
�

�

2�
�
��
�
M�


�

, (44)

where

K
��

"

�K
�

�k
0

0
�K

�
�k

. (45)



DISPERSION OF WAVES IN IMMERSED LAMINATED HOLLOW CYLINDERS 223
3. NUMERICAL RESULTS AND DISCUSSION

In what follows, numerical examples are employed to illustrate graphically the dispersive
behaviours of a laminated composite cylinder surrounded by a #uid. In laminate codes
used, a lamina numbering increases from the inner to outer surface; the letters C and
G represent carbon/epoxy and glass/epoxy, respectively; the number following the letters
indicates the "bre orientation with respect to the z-axis; the subscript s denotes that the
laminated shell is symmetrically stacked about the middle surface. For the sake of
simplicity, the following dimensionless parameters are adopted:

kN "k (R
�
!R

�
), 
N "
/(R

�
!R

�
), RM "R

�
/(R
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!R

�
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�
, �N "�

�
/�, �N "�(R

�
!R

�
)��/Q

��
,

where Q
��

and � are the reference properties and taken as Young's modulus in the "bre
direction and mass density of C0. The material properties of the cylinder are taken from
Takahashi and Chou [27]. The #uid is taken as water of �

�
"1)0 g/cm�, c"1)48�10�m/s

and RM
�
"20. Since the present method is within the framework of the theory of

three-dimensional elasticity, it is applicable not only to a cylinder but also to a circular
cylindrical shell. Thus, to discuss the distinction between them, two ratios of radius to
thickness RM "1 and 100 are used. In this study, a cylinder of RM "100 is termed a cylindrical
shell simply.

When the radius tends to be large, the results for the cylindrical shell approach those for
the appropriate plate. To verify the present formulation and its numerical implementation,
a validation of the numerical results against previously published data is provided for
a (C0/G$45)

�
plate. The value of the radius is RM "100. It has been found that, as shown in

Figure 4, the computed results compare very well with published results [28]. The results
for the plate were obtained by Liu et al. using a hybrid-numerical method.

Next, we turn to the computation of the frequency spectra in a laminated composite
cylinder and cylindrical shell surrounded by a #uid. The dispersion curves for an immersed
(C0/G$45)

�
cylindrical shell are illustrated in Figures 5(a) and 5(b), and compared with

those for the corresponding cylindrical shell in vacuum. The propagation directions of
Figure 4. Dispersion curves for axial waves propagation in a (C0/G$45)
�
plate:** , present analysis; } } } ,

Liu et al. [28].



Figure 5. Dispersion curves for waves propagating in a (C0/G$45)
�
cylindrical shell. (a) �"0; (b) �"303.

**, wet shell; } } } , dry shell.

Figure 6. Dispersion curves for waves propagating in a (C0/G$45)
�
cylinder. (a) �"0; (b) �"303. ** ,

wet cylinder; } } } , dry cylinder.
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waves are chosen as �"0 and 303, respectively; the former is for the axial wave; the latter is
for the helical wave. Generally speaking, the presence of the #uid a!ects all of the
frequencies to some extent. And this e!ect is dependent on the propagation mode and
direction of waves. The interaction of the #uid and shell causes the reduction of the higher
frequencies, but seems to have little impact on the lower frequencies. The #uid and shell
coupling e!ect can be elaborated by way of the so-called added mass concept. The lower
frequencies are dominated by the sti!ness of the shell, while the higher frequencies are
controlled by the mass of the shell. The addition of the #uid increases equivalently the mass
of the shell and accordingly reduces the higher frequencies of the shell.

Figures 6(a) and 6(b) are the same as Figures 5(a) and 5(b) but for a cylinder. These
results further con"rm the preceding observations.

We now investigate the group velocity spectra in a laminated composite cylinder
surrounded by a #uid. The group velocity spectra in an immersed (C0/G$45)

�
cylindrical

shell are illustrated in Figures 7(a) and 7(b), and compared with those for the corresponding
dry case. The propagation directions of waves are also chosen as �"0 and 303 respectively.
From these two "gures, it can be seen that the presence of the #uid causes the
redistributions of the group velocity spectra in anisotropic shells. The di!erence between
the amplitudes of the group velocity spectra is as apparent. The group velocities for most of



Figure 7. Group velocity spectra for waves propagating in a (C0/G$45)
�

cylindrical shell. (a) �"0;
(b) �"303. ** , wet shell; } } } , dry shell.

Figure 8. Group velocity spectra for waves propagating in a (C0/G$45)
�
cylinder. (a) �"0; (b) �"303.** ,

wet cylinder; } } } , dry cylinder.
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the propagation modes for the wet shell are smaller in magnitude than those for the
appropriate dry shell. Only a few cases are otherwise. It is noteworthy that for a range of
small wave numbers, the dry shell has negative group velocity, but the wet shell has not.
Consequently, the presence of the #uid can prevent the phenomenon wherein energy
propagates in the opposite direction to the wave normal. As mentioned above, the group
velocity is one of the important concepts in wave propagation, as it is the rate at which
energy is transported. The strong #uid}shell coupling e!ect implies that the dynamic design
of an immersed composite cylindrical shell must account for the presence of the #uid.

Figures 8(a) and 8(b) are the same as Figures 7(a) and 7(b) but for a cylinder. The curves
in these two "gures once again demonstrate strong #uid}structural coupling e!ects.

4. CONCLUSIONS

An LEM has been presented for analyzing the dispersive behaviours and group velocity
of waves in laminated composite cylinders surrounded by a #uid. The method of approach
is formulated within the framework of the theory of three-dimensional elasticity, and is thus
accurate in comparison with those using various approximate theories. The use of the LEM
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not only is capable of reducing the spatial dimensions of a problem by one but also makes it
easier to deal with cylinders composed of an arbitrary number of anisotropic layers, of
arbitrary lay-ups and of any type of materials. Furthermore, the method is capable of
omitting tedious pre-processors occupying a substantial part of "nite element methods, and
accordingly of reducing a great deal of computational labour. Numerical results indicate
that the addition of the #uid has a strong in#uence on the group velocity of waves. Thus, the
#uid}cylinder coupling e!ect must be taken into account in the dynamic design of immersed
laminated composite cylinders and cylindrical shells.
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